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Abstract

A design control optimization approach is used to determine optimal levels of ply thickness, fiber orientation angle and closed-
loop control force for composite laminated doubly curved shells. The optimization objective is the minimization of the dynamic
response of a shell subject to constraints on the thickness and control energy. A higher-order shell theory is used to formulate the
control objective for various cases of boundary conditions. The dynamic response is expressed as the sum of the total elastic energy
of the shell and a penalty functional of a closed-loop control force. Comparative examples are presented for symmetric (or anti-
symmetric) spherical and cylindrical shells with various cases of boundary conditions. The advantages of the present control op-
timization over some design and control approaches are examined. The effect of number of layers, aspect ratio and orthotropy ratio
on the control process is demonstrated. The discrepancy between optimal results obtained using the classical, first-order and higher-
order shell theories is studied.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An important area of application of fiber composite structures occurs in the field of aerospace engineering and, in
particular, in the construction of large space structures. Material tailoring and active control are effective means of
improving the performance of these structures because of the adaptability of composite materials to a given design
situation. For aerospace structures, weight considerations invariably lead to highly flexible structures with low natural
damping. However, serviceability and safety requirements restrict the allowable limits of the dynamic response to
external disturbances to specified values. So, optimization is a necessary part of the design process for these structures.

Design optimization of composite laminated structures is concerned with the best use of the tailoring capabilities of
fiber-reinforced laminated beams, plates and shells to minimize (or maximize) a given design objective. The vibration
damping involves the damping out of the excessive vibrations by means of active structural control. These two subjects
were treated in literature separately [1-4], while, in more recent studies, they were treated as an integrated approach for
simultaneous design and control of these structures using unified formulation [5-8]. Most recent studies on these
subjects may be found in the works [9-14].

Many studies indicate that transverse shear deformation can have significant effect on the global response and,
consequently, on the dynamic response of laminated plates and shells made of advanced composite material [15,16]. As
a result, the classical theories of laminated plates and shells underpredict the optimum values of the design variables. In
addition, the boundary conditions at the edges play an important role in decreasing (or increasing) the dynamic re-
sponse of laminated composites [17]. However, most of studies related to the design and control optimization of
laminated composite plates and shells were carried out based on the classical theories of plates and shells for special
cases of boundary conditions, and there exist few papers formulated based on shear deformation theories for various
cases of boundary conditions [18,19].
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The current work deals with the minimization of the dynamic response of a composite laminated doubly curved
shells using design and control optimization. The present formulation is based on a higher-order shear deformation
shell theory with various cases of boundary conditions. The dynamic response of the shell is expressed as the sum of the
total energy of the shell and a penalty functional involving closed loop control force. The ply thickness and fiber
orientation angle are taken as design variables. Liapunov—Bellman theory is used to obtain solutions for controlled
shell deflections and optimal control force. Various examples and numerical results for laminated symmetric (or an-
tisymmetric) cylindrical and spherical shells are given. The effect of boundary conditions, number of layers, anisotropy
ratio, aspect ratio, side-to-thickness ratio and radius-to-thickness ratio on the minimization process is illustrated.

2. Geometry of the shell and basic equations

Let (&;, &,,z) denote the orthogonal curvilinear coordinates (or shell coordinates) such that the &,- and &,-curves are
lines of curvature on the midsurface z = 0, and z-curves are straight lines perpendicular to the surface z = 0. For
spherical and cylindrical shells, the lines of principal curvature coincide with the coordinate lines. The values of the
principal radii of curvature of the middle surface are denoted by R, and R,. In this case, the distance dS between two
points (&, &,,z) and (& +dé&;, & + dé,,z + dz) is given by

(dS)* = L}(dé))” + L3(d&)’ + L3(d2)’,

where Lame’s coefficients L;, L, and L3 are related to the surface metrics o, o, and o3 by the following relations:

z
L 1 L, = 14— Ly =1. 1
1 ( +R1> 2 062< +R2>’ 3 (1)

The shell under consideration is composed of a finite number of orthotropic layers N with total constant thickness 4.
Let z; and z;_; be the top and bottom z-coordinates of the kth lamina. The present study is based on a higher-order
displacement field satisfying the condition that the transverse shear stresses vanish on the top and bottom surfaces of
the shell. This displacement field is given by [20]
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where (u;,uy,u3) are the displacements along &, &, and z directions, respectively, (u, v, w) are the displacements of a
point on the midplane, and  and ¢ are the rotations of normals to the midsurface with respect to the &,- and &,-axes.
All displacement components (u, v, w, Y, ¢) are functions of &;, & and time ¢.

Using the linear strain—displacement relations referred to an orthogonal curvilinear coordinate system, we obtain:
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The governing equations associated with the displacement field (2a)—(2c) may be obtained using the dynamic version of
the virtual displacement principle in the form [20].
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the quantities T . have the same forms as /; except that R, is replaced by R, g is a force distributed over the upper surface
of the shell, p® is the material density of the kth layer. The stress resultants are related to the strain components by the
following laminate constitutive equations,
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The material elastic constants Cff) of the kth lamina are related to the homogeneous laminate stiffnesses 4;;, B;; etc., by
the following expressions:

(g Bys Dy, Eys Fy, H / ®(1,2,2,2,2.29dz (i,j=1,2,4,5,6). (6)

The present control problem accounts for various cases of boundary conditions at the edges, i.e., when the shell edges
are simply supported (S), clamped (C) free (F), or when combination of these boundary conditions are prescribed over
the edges. Then, these boundary conditions on the edges perpendicular to &,-curve associated with the present shell
theory take the form:
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FZN1:M1:P1:N(,:M6—P6:@1+P1_’51+P6'§2:O,

where ( )., denotes partial differentiation with respect to &.

Governing Eqgs. (4a)—(4e) can be specialized for flat plates by setting 1 /R, = 1/R, = 0, for spherical shells by setting
R, = R, = R; and for cylindrical shells by setting 1/R; =0, R, = R, and £;-axis is taken along the generator of the
cylinder. Governing equations of the first-order shear deformation (FST) can be deduced from those of the third-order
theory (HST) by setting y = 0. Also the classical theory (CST) is obtained from FST by setting

1 ow 1 ow
=—-——_— and =——_—.
l,b o1 661 ¢ 2%) 662
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3. The control objective and optimization variables

The present study aims to minimize the dynamic response of a laminated doubly curved shell in a specified time
0 <1< 1< oo with the minimum possible expenditure of force g(&;, &,,¢). The total energy of the shell may be taken as
a measure of the dynamic response so that the control objective may be written as

J(q, i, Or) = / / / / [8,-6,~+p(k)(it%+it§+it§)}oc1a2dzdfld52dt

+,Ll/ / / q2(€1a§27t)ala2déld62dt (l: 172747576)7 (8)
0 0 0

where @ and b are curvilinear dimensions of the shell along &,- and &,-axes, respectively and the weighting factor p is a
positive constant. The last term in (8) is a penalty functional involving the control function ¢ € L? where L? denotes the
set of all bounded square integrable functions on the domain of the solution.

The cost functional (8) of the present control problem depends on the distributed force g(&,, &5, ¢), the thickness of
the layers /; and fiber orientation angle 6;. Then the present optimal control problem can be reduced to determine the
optimization variables ¢, &, and 6, that minimize the cost functional (8).

4. Solution procedure

The solution of the system of partial differential Eqgs. (4a)—(4e) with the boundary conditions (7), may be expanded
in the form of double series in terms of the free vibration eigenfunctions of the shell. Then, the displacements functions
(u, v, w, ¥, ¢) and the closed-loop control function ¢ may be represented as:

(uv v, w, l,b, ¢7 q) = Z (UmﬂXY«,fp Vm’le,Q Y’ VV’""XY’ qjm"Xf,l Y7 dszXY,iz’ anXY)v (9)
where U, Vins Wons Youns @on and Q,,, are unknown functions of time. The functions X (&) and Y (¢,) are continuous
orthonormed functions which satisfy at least the geometric boundary conditions given in (7) and represent approxi-
mate shapes of the deflected surface of the vibrating shell. These functions, for different cases of boundary conditions
are given in Appendix A.

Using Egs. (3a), (3b), (3¢), (5a) and (5b), we can get the governing Eqs. (4a)—(4e) in terms of the displacements. For
these equations, the in-plane inertia terms may be neglected. Substituting expressions (9) into the resulting equations
and multiplying each equation by the corresponding eigenfunction, then integrating over the domain of solution, we
obtain after some mathematical manipulations, the following time equations:

UI Vl VV] 'Pl ¢l Umn Wl
U v M ¥y §of | Vi W,
U3 V3 I/V3 'P3 ¢3 Van = W3 mn an ) (10)
Us Vi Wa Wi @4 | P W aW
US VS VVS lIIS (DS émn WS I/an

the coefficients U;, V;, W;, ®;, ¥, and W;(i = 1,2,...,5) are given in Appendix A. Solving the system (10), one gets an
equation of the time-dependent functions W,,, and Q,,, only,

A A
Van + wm,, mn — anmm wfnn = Al ) Zmn = ﬁ? (11)

where, A, A, and Aq are given in the Appendix B.
Following previous analogous steps, we can get the objective functional (8) in the final form:

J = Z / kl mn + k2 anmn + kSQm,, + k4 VV;,%V, + kS anmn + k6Qm,1> (12)

where, the coefficients k; (i = 1,2,...6) are given in Appendix C. Since the system of Eq. (11) is separable, hence the
functional (12) depends only on the variables found in (m,n)th equation of the system. With the aid of this condition,
the problem is reduced to a problem of analytical design of controllers [21,22] for every m,n=1,2,...00.

Now the optimal control problem is to find firstly, the control function ¢°'(¢) that satisfies the conditions

J(gom) <J(gma)  for all g, () € L*([0, o)),
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that is
minJ = min ZJ,,,,, = Z min J,

qmn o Gmn cl?

and, secondly, to find the optimum values of 4; and 0; from the following minimization condition:

J(aoiy 1 O7) = min £ (g5 B Or), Zk:hk —=h, 0<0<m/2.

For this problem, Liapunov-Bellman theory [22] is used to determine the control force ¢(x,y, ¢). This theory gives the

necessary and sufficient conditions for minimizing the functional (12) in the form:
. aLmn - aLmn
min W + —

q aVan aVan

provided that the Liapunov function

Lmn = Amn ern + 2an I/an I/.an + Cmn W2

mn?

I}an +-7mn] :07 (13)

(14)

is positive definite, i.e., 4,,, > 0, C,,, > 0 and 4,,,C,,, > Bfm, where J,, is the integrand of (12). Using Eq. (14) we can
obtain the optimal control function in the form:

—1 Conl
oPt — Zan lmn k I/an -
QWI” 2k3 ( Jr 2) k3
then, substituting Eq. (15) into (13) and equating the coefficients of ann, ann and W,,, W,, by zeros, the following system
of equations is obtained

C2 (alB,Z,m + aZan + 613) + a4an + as = 07

Cfm(%Cﬁm + CZ7B,,m + ag) + a()Bim + ClloBm,, +a; = O, (16)
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mn mn

W, (15)

where a; (i =1,2,...,17) are given in Appendix C. Under the condition that the Liapunov function is a positive
definite, the solution of the system of nonlinear algebraic Eq. (16) may be obtained, then, using this solution into Eq.
(11), one gets:

. . Conl? L
I/an + % Wnn + ﬁ,zn,, Van = 07 Oln = I e ) ﬁin = win + j (Zan lmn + k2)7
3 3
the solution of this equation when 28, > a,, is given by
—nt N . . 1
I/an =¢ ?2 [5mn COS(CUmnt) + Timn Sln(wr.nnt)}’ Vinn = ﬁlznn - Zagnn’

where 0,,,, T,,, are unknown coeflicients which may be obtained from the initial conditions by expanding it in a series. If
the initial conditions have the form:

W(élaébo) 22(51762)7 w(£1552’0) :07
then, the controlled deflection solution takes the form:

Wy = Ae~ 2" (cos(w?, 1) + 2%"" sin(cofmt)>. (17)
w*

mn

Insert expressions (17) into (10), (12) and (15) we can get the controlled displacements, the total energy and the optimal
control force. Then, we complete the minimization process for the dynamic response of the shell by determining the
optimal design of the shell using the design variables 6, and #;.

5. Numerical results and discussion

Numerical results for maximum optimal control force ¢, central controlled deflection w and total energy J are
presented for symmetric (or antisymmetric) angle-ply spherical and cylindrical shells with various cases of the
boundary conditions (7). All layers of the laminate are assumed to be of the same orthotropic materials. A shear
correction factor for FST is taken to be 5/6. The plane reduced stress material stiffnesses C;; are given by
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E vi2E)> E,

Cu Cn=

= 1 ) - 1 bl 2 = 1 )
— Vi2V21 — Vi2V21 — Vi2V21
Cyu =Gy, Css=Giz, Cg =G, viE; =viE  (i,j=1,2).

where E; are Young’s moduli; v;; are Poisson’s ratios and G;; are shear moduli. In all calculations, unless otherwise
stated, the following parameters are used:

a=b=20in, h=2in, p=0.000121b—s*/in% R, =R,=5a, u=0.00l,
Z = 10310\)727 EZ = 106 pSi, E] = 25E2, G12 = G13 = 0.5E2, G23 = O.ZEQ, Vip = 0.25.

For the optimal design, we consider angle-ply (0, 0, 8) laminated shells with outer layers having the same thickness; and
therefore we take the optimization thickness variable r representing the ratio of the outer layer thickness to the total
shell thickness. All calculations in tables and figures are carried out at the midpoint of the shell, and for maximum
amplitude of w and q.

Table 1 contains numerical results of controlled central deflection w, controlled energy J and maximum control
force ¢ obtained using the various shell theories CST, FST and HST for three-, five- and thirteen-layer symmetric
spherical and cylindrical shells with simply-supported edges (SSSS). Table 2 contains similar results for two-, four- and
twelve-layer antisymmetric spherical and cylindrical shells. The CST under-predicts w, J and ¢ due to the assumed
infinite rigidity of the transverse normals, hence, the CST models the structure stiffer than it is, so, the structure needs
less energy to control its dynamic response. But, the results predicted by various shell theories are very close for thin
shells, while, the discrepancy between them are pronounced for thicker shells. Note that the deflections obtained by
CST differ from those obtained using FST and HST for the symmetric case by 40% for A/a = 0.1, and by 75% for
h/a =0.2. Further, in the antisymmetric case, these differences are less, where their maximum reaches 50% for
a/h = 0.2. The differences between FST and HST results do not exceed 10% for moderately thick shells. Also, these

Table 1
Values of ¢, J and w for three-, five- and thirteen-layer symmetric SSSS spherical and cylindrical shells according to CST, FST and HST, a = b = 20,
R =100, E,/E, =25

h Th. 45,0,45 45,—-45,0,—-45,45 45,—-45,45,—45,45,—45/0/sym.
q J w q J w q J w

Case 1: spherical shell

0.5 CST 487.20 45.312 1.2577 474.75 40.580 1.1395 465.07 37.269 1.0556
FST 489.11 46.090 1.2769 476.51 41.216 1.1556 466.70 37.807 1.0694
HST 489.53 46.271 1.2813 476.86 41.353 1.1590 467.00 37.915 1.0721

1 CST 307.19 12.945 0.2824 301.44 12.260 0.2680 297.25 11.781 0.2579
FST 318.49 14.393 0.3129 312.21 13.576 0.2958 307.53 12.993 0.2836
HST 320.85 14.720 0.3197 314.27 13.848 0.3015 309.35 13.226 0.2884

2 CST 14591 2.7797 0.0441 144.27 2.7087 0.0430 143.32 2.6683 0.0423
FST 175.09 4.2664 0.0676 172.80 4.1355 0.0656 171.21 4.0466 0.0642
HST 180.34 4.5861 0.0726 177.49 4.4151 0.0699 175.46 4.2965 0.0681

4 CST 58.380 0.52759 0.0059 57.917 0.5189 0.0058 57.731 0.51545 0.0057
FST 100.23 1.7015 0.0192 99.276 1.6665 0.0188 98.602 1.6422 0.0185
HST 105.76 1.9195 0.0216 104.17 1.8572 0.0209 103.05 1.8141 0.0204

Case 2: cylindrical shell

0.5 CST 560.49 88.807 2.2595 553.97 83.491 2.1439 549.20 79.818 2.0630
FST 563.89 91.727 2.3223 557.26 86.126 2.2014 552.37 82.234 2.1162
HST 564.65 92.415 2.3370 557.94 86.697 2.2137 552.98 82.722 2.1269
1 CST 331.94 16.296 0.3527 329.02 15.866 0.3437 327.36 15.624 0.3387
FST 346.84 18.658 0.4015 343.72 18.140 0.3909 341.82 17.829 0.3844
HST 350.01 19.209 0.4128 346.60 18.628 0.4008 344.45 18.269 0.3934
2 CST 149.99 2.9636 0.0470 148.91 2.9146 0.0462 148.50 2.8959 0.0459
FST 182.58 4.7180 0.0747 181.28 4.6381 0.0735 180.60 4.5962 0.0728
HST 188.62 5.1122 0.0809 186.79 4.9927 0.0790 185.68 49211 0.0779
4 CST 58.819 0.53623 0.0060 58.427 0.52873 0.0059 58.314 0.52655 0.0059
FST 102.77 1.7982 0.0203 102.18 1.7759 0.0200 101.85 1.7631 0.0199

HST 108.78 2.0435 0.0230 107.57 1.9940 0.0225 106.80 1.9627 0.0221
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Table 2
Values of ¢, J and w for two-, four- and twelve-layer antisymmetric SSSS spherical and cylindrical shells according to CST, FST and HST,
a=b=20,R=100, E,/E, =25

h Th. 45,45 45,—45,45,-45 45, 45,45, 45,45, —45 /antisym.
q J w q J w q J w

Case 1. spherical shell

0.5 CST 411.23 23.302 0.6867 398.99 20.944 0.6218 395.60 20.334 0.6049
FST 411.39 23.333 0.6879 399.66 21.067 0.6252 396.47 20.490 0.6092
HST 411.38 23.336 0.6876 399.80 21.098 0.6260 396.63 20.522 0.6101

1 CST 302.91 12.435 0.2717 272.63 9.2634 0.2042 265.39 8.6119 0.1902
FST 304.58 12.636 0.2760 278.13 9.7881 0.2156 272.13 9.2208 0.2034
HST 304.60 12.647 0.2762 279.32 9.9099 0.2181 273.31 9.3366 0.2059

2 CST 182.60 4.6965 0.0741 144.37 2.7136 0.0430 137.06 2.4112 0.0383
FST 191.92 5.3088 0.0838 164.47 3.6816 0.0584 159.74 3.4400 0.0547
HST 192.11 5.3337 0.0842 168.21 3.8887 0.0617 163.12 3.6191 0.0575

4 CST 85.982 1.1910 0.0131 61.330 0.5843 0.0065 57.270 0.5070 0.0056
FST 108.44 2.0134 0.0226 95.959 1.5477 0.0175 94.257 1.4895 0.0168
HST 108.53 2.0290 0.0228 100.80 1.7290 0.0195 98.182 1.6329 0.0184

Case 2: cylindrical shell

0.5 CST 549.04 79.737 2.0617 514.88 58.186 1.5698 506.27 53.829 1.4662
FST 549.52 80.097 2.0697 516.62 59.116 1.5918 508.46 54.905 1.4920
HST 549.53 80.117 2.0701 517.02 59.346 1.5971 508.88 55.125 1.4971
1 CST 389.90 27.306 0.5754 327.26 15.614 0.3386 314.30 13.852 0.3018
FST 393.93 28.294 0.5951 337.59 17.166 0.3708 326.39 15.498 0.3363
HST 394.05 28.343 0.5959 339.91 17.541 0.3785 328.60 15.826 0.3431
2 CST 210.15 6.6196 0.1040 156.36 3.2623 0.0517 147.12 2.8352 0.0450
FST 225.39 7.9132 0.1243 183.48 4.7739 0.0756 176.90 4.3760 0.0694
HST 225.79 7.9670 0.1250 188.86 5.1275 0.0811 181.64 4.6694 0.0740
4 CST 90.382 1.3267 0.0146 62.856 0.61535 0.0068 58.508 0.53030 0.0059
FST 118.35 2.4438 0.0274 102.60 1.7915 0.0202 100.53 1.7140 0.0194
HST 118.52 2.4665 0.0276 108.65 2.0385 0.0230 105.38 1.9065 0.0215

differences in the control force do not exceed 45% for the symmetric case and 25% for the antisymmetric case. In
general, the symmetric laminated shells are more sensitive to the transverse shear effect than the antisymmetric ones.
This is because that the angle-ply symmetric shells offer more shear stiffnesses than the antisymmetric shells, so, they
exhibit bending-twisting coupling which has the effect of increasing the flexibility of the transverse normals.

The dependence of the control process on the number of layers N is illustrated in Tables 3 and 4, where the values of
q,J and w are presented against the number of layers N for symmetric and antisymmetric shells with various cases of
boundary conditions. These results show that the HST is believed to be more accurate than CST and FST for various
cases of boundary conditions. Also, the number of layers has a weak effect on the damping process of the dynamic
response for the symmetric shells, while, this effect is more obvious in antisymmetric shells. In general, the influence of
the number of layers dies out rapidly when N > 5. The above observation can be explained by the fact that the
symmetric shells exhibit no coupling between bending and extension, and this coupling appears in antisymmetric shells
and makes them more flexible. Moreover, this coupling disappears as the number of layers increases. Note that, the
cylindrical shells need more expenditure of control energy to reduce their dynamic responses than the symmetric ones
of same material and geometry.

The variation of ¢, J and w against the radius of curvature R is presented in Table 5 for symmetric spherical and
cylindrical shells with simply-supported edges. The previous conclusions about the discrepancy between the CST, FST
and HST result still hold for the results in Table 5. In addition, this discrepancy increases as the radius of the shell
increases. As it is known for shallow shells that the effect of shear deformation is weak, but the present results for
shallow shells have high sensitivity to the shear deformation effect. This may be explained as for moderately thick
shallow shell, the thickness has dominant effect more than the shell radius.

Tables 6-8 include optimum values of fiber orientation angle 0, and thickness ratio ., against side-to-thickness
ratio, aspect ratio, and orthotropy ratio for (0,0, ) symmetric spherical and cylindrical shells in various cases of
boundary conditions. Note that, for each case of boundary conditions, there is a suitable optimal design for the shell to
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Table 3
Effect of number of layers N on ¢, J and w for symmetric (45, —45...,0...,—45,45) shells according to CST, FST and HST with various boundary
conditions, a/b =1, a/h =5, E\/E; =25, R/h = 25

N Th. CCSS CccccC CFSS
q J w q J w q J w

Case 1. spherical shell

3 CST 88.451 0.4917 0.0053 149.78 0.5780 0.0061 278.86 18.928 0.0495
FST 175.36 2.1637 0.0237 325.17 3.1381 0.0334 305.50 26.788 0.0745
HST 182.03 2.3567 0.0258 339.34 3.4616 0.0368 314.06 29.378 0.0814

5 CST 89.031 0.4985 0.0054 149.89 0.5788 0.0061 288.96 20.726 0.0530
FST 176.37 2.1913 0.0240 325.01 3.1348 0.0333 311.91 28.571 0.0790
HST 182.96 2.3832 0.0261 338.12 3.4345 0.0365 318.45 30.806 0.0854

13 CST 89.210 0.5005 0.0054 149.91 0.5791 0.0061 297.84 22.456 0.0563
FST 177.51 22222 0.0243 324.92 3.1321 0.0333 318.41 30.429 0.0835
HST 184.48 2.4266 0.0266 337.52 3.4203 0.0363 321.38 31.827 0.0883

Case 1: cylindrical shell

3 CST 89.192 0.5005 0.0054 150.76 0.5861 0.0061 305.67 24.312 0.0605
FST 181.95 2.3484 0.0257 336.65 3.3928 0.0361 347.50 39.575 0.1025
HST 189.52 2.5780 0.0282 352.54 3.7745 0.0401 361.20 45.445 0.1161
5 CST 89.727 0.5068 0.0055 150.81 0.5866 0.0061 306.40 24.357 0.0602
FST 182.59 2.3667 0.0259 336.01 3.3784 0.0359 337.71 36.337 0.0963
HST 190.01 2.5927 0.0284 350.64 3.7287 0.0396 346.54 40.023 0.1059
13 CST 89.851 0.5082 0.0055 150.81 0.5865 0.0061 306.49 24.350 0.0601
FST 183.32 2.3874 0.0262 335.44 3.3654 0.0358 330.63 34.188 0.0922
HST 191.09 2.6256 0.0287 349.46 3.7004 0.0393 334.19 35.983 0.0982
Table 4

Effect of number of layers N on ¢, J and w for antisymmetric (45, —45, . . .) shells according to CST, FST and HST with various boundary conditions,
a/b=1,a/h=5, E\JE; =25, R/h =25

N Th. CCSS CCcCC CFSS
q J w q J w q J w

Case 1: spherical shell

2 CST 134.70 1.1867 0.0127 227.75 1.3921 0.0144 243.48 15.603 0.0514
FST 192.29 2.6443 0.0288 348.01 3.6462 0.0386 248.02 17.009 0.0581
HST 192.14 2.6550 0.0290 347.40 3.6501 0.0387 246.09 16.793 0.0577

4 CST 95.644 0.5780 0.0062 161.43 0.67460 0.0071 233.39 12.782 0.0385
FST 175.17 2.1583 0.0236 322.55 3.0812 0.0328 233.04 14.004 0.0467
HST 184.45 2.4262 0.0265 339.70 3.4705 0.0368 231.19 13.998 0.0476

12 CST 89.241 0.5010 0.0054 150.59 0.58433 0.0061 229.97 12.092 0.0358
FST 172.88 2.0970 0.0230 319.25 3.0111 0.0320 228.83 13.324 0.0444
HST 179.94 2.2976 0.0252 331.91 3.2932 0.0350 227.53 13.372 0.0453

Case 2: cylindrical shell

2 CST 138.68 1.2637 0.0135 232.40 1.4546 0.0151 320.28 31.833 0.0904
FST 205.58 3.0717 0.0335 367.30 4.1227 0.0437 338.68 39.315 0.1135
HST 205.53 3.0870 0.0336 366.68 4.1275 0.0437 334.79 38.286 0.1118
4 CST 97.035 0.5958 0.0064 163.05 0.68912 0.0072 287.94 21.295 0.0568
FST 185.03 2.4365 0.0267 337.73 3.4166 0.0363 298.68 26.117 0.0767
HST 196.14 2.7824 0.0304 357.70 3.9013 0.0414 297.01 26.306 0.0792
12 CST 90.374 0.5144 0.0056 151.89 0.59521 0.0062 279.81 19.336 0.0512
FST 182.32 2.3588 0.0258 333.89 3.3306 0.0354 289.46 23.855 0.0708
HST 190.76 2.6156 0.0286 348.53 3.6781 0.0391 288.75 24.174 0.0732

improve its performance. Further the dimensions of the shell with the orthotropy ratio have an important role at
determining the optimal design. For example, the cross-ply lamination scheme with layers of equithickness is the
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Values of ¢, J and w for three-, five- and thirteen-layer symmetric SSSS spherical and cylindrical shells according to CST, FST and HST, a/b = 1,

ll/h = 10, EI/E2 =25

R Th. 45,0,45 45,—-45,0,—45,45 45,—45,45, 45,45 —45, /0/sym.
q J w q J w q J w
Case 1. spherical shell
10 CST 56.358 0.32451 0.004789 52.388 0.28023 0.004161 49.157 0.24836 0.003733
FST 57.315 0.33671 0.004977 53.160 0.28941 0.004305 49.806 0.25566 0.003849
HST 57.420 0.33844 0.005002 53.243 0.29065 0.004322 49.863 0.25654 0.003862
50 CST 132.60 2.2290 0.035302 129.51 2.1141 0.033500 127.24 2.0330 0.032233
FST 152.74 3.0886 0.048948 148.35 2.8886 0.045807 144.98 2.7411 0.043507
HST 156.06 3.2529 0.051518 151.18 3.0221 0.047900 147.41 2.8532 0.045267
100 CST 145.91 2.7796 0.044084 144.26 2.7086 0.042967 143.31 2.6680 0.042334
FST 175.07 4.2655 0.067614 172.80 4.1350 0.065562 171.18 4.0453 0.064164
HST 180.33 4.5860 0.072615 177.48 4.4147 0.069935 175.44 4.2951 0.068074
00 CST 151.42 3.0300 0.048068 150.54 2.9898 .047434 150.32 2.9796 0.047273
FST 185.28 4.8893 0.077459 184.37 4.8319 0.076564 184.04 4.8111 0.076243
HST 191.66 5.3155 0.084110 190.21 5.2192 0.082604 189.48 5.1691 0.081827
Case 2: cylindrical shell
10 CST 97.401 1.0213 0.0147 97.401 1.0213 0.0147 87.430 0.8219 0.0121
FST 102.94 1.1543 0.0167 102.94 1.1543 0.0167 91.522 0.9088 0.0134
HST 103.69 1.1744 0.0170 103.69 1.1744 0.0170 91.977 0.9199 0.0135
50 CST 146.36 2.7895 0.0441 146.36 2.7895 0.0441 143.68 2.6761 0.0423
FST 175.62 4.2814 0.0676 175.62 4.2814 0.0676 171.64 4.0585 0.0642
HST 180.89 4.6023 0.0726 180.89 4.6023 0.0726 17591 4.3091 0.0681
100 CST 150.09 2.9659 0.0470 150.09 2.9659 0.0470 148.56 2.8972 0.0459
FST 182.69 4.7216 0.0747 182.69 4.7216 0.0747 180.67 4.5984 0.0728
HST 188.75 5.1162 0.0809 188.75 5.1162 0.0809 185.75 4.9235 0.0779
00 CST 151.08 3.0137 0.0478 151.08 3.0137 0.0478 149.87 2.9586 0.0469
FST 184.63 4.8467 0.0768 184.63 4.8467 0.0768 183.19 4.7571 0.0754
HST 190.91 5.2637 0.0833 190.91 5.2637 0.0833 188.52 5.1060 0.0808
Table 6
Optimum values of Oq, and r,p, for (0,0, 0) spherical and cylindrical shell against a/k for various boundary conditions (BC), E, /E, = 25, R/a =5,
a/b=1
BC Opt. a/h
5 10 15 20 25 5 10 15 20 25
Case 1: spherical shell Case 2: cylindrical shell
SSSS Oopt 45° 45° 45° 45° 45° 44.7 44.9° 45° 44.9° 44.9°
Fopt 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CSSS Oopt 33.1° 35.2° 35.6° 36.2° 36.7° 33° 36.9° 39.5° 41.6° 43.4°
Fopt 0.31 0.41 0.5 0.5 0.5 0.27 0.41 0.49 0.5 0.5
CCSS Oopt 30° 27.1° 19.5° 9.6° 0° 31.1° 28.7° 21.9° 14.2° 8°
Fopt 0.19 0.21 0.21 0.2 Open 0.21 0.23 0.23 0.25 0.38
CCcCC Oopt 90° 90° 90° 90° 90° 63.7° 68.1° 90° 90° 90°
Fopt 0.03 0.05 0.05 0.05 0.05 0.5 0.5 0.5 0.5 0.5
CFSS Oopt 90° 90° 90° 90° 90° 90° 90° 90° 90° 90°
Fopt 0.5 0.28 0.12 0.06 0.01 0.5 0.5 0.5 0.5 0.5

optimal design for symmetric shells when a/b > 3, and when a/h > 15 in the CCCC and CFSS boundary conditions
cases. Particularly, for large value of E, /E,.
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Table 7
Optimum values of Oqy and ryp, for (0,0, 0) spherical and cylindrical shell against a/b for various boundary conditions (BC), E| /E, = 25, R/a =5,
a/h =10

BC Opt. a/b
1 2 3 4 1 2 3 4
Case 1: spherical shell Case 2. cylindrical shell
SSSS Oopt 45° 79.9° 90° 90° 44.9° 80.2° 90° 90°
Fopt 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
CSSS Oopt 35.2° 77.4° 90° 90° 36.9° 77.7° 90° 90°
Topt 0.41 0.5 0.5 0.5 0.41 0.5 0.5 0.5
CCSS Oopt 27.1° 71.2° 90° 90° 28.7° 71.5° 90° 90°
Topt 0.21 0.5 0.5 0.5 0.23 0.5 0.5 0.5
CccccC Oopt 90° 90° 90° 90° 68.1° 90° 90° 90°
Fopt 0.05 0.07 0.5 0.5 0.5 0.5 0.5 0.5
CFSS Oopt 90° 90° 90° 90° 90° 90° 90° 90°
Fopt 0.28 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Table 8

Optimal quantities (opt.) for spherical and cylindrical shell against E;/E, for various boundary conditions (BC), a/h =10, R/a=15, a/b=1
(open = arbitrary)

BC Opt E1 /E2
1 5 10 25 40 1 5 10 25 40
Case 1: spherical shell Case 2: cylindrical shell
SSSS Oopt 90° 45° 45° 45° 45° 90° 45° 44.9° 44.9° 44.8°
Fopt 0.36 0.5 0.5 0.5 0.5 0.36 0.5 0.5 0.5 0.5
CSSS Oopt 90° 31.9° 33.5° 35.3° 36.3° 90° 32.8° 34.5° 36.9° 39.4°
Fopt 0.28 0.43 0.42 0.41 0.42 0.28 0.43 0.41 0.41 0.43
CCSS Oopt 0° 0° 16.3° 27.0° 29.4° 0° 0° 17.7° 28.7° 31.8°
Fopt Open Open 0.19 0.21 0.21 Open Open 0.21 0.23 0.24
Ccccc Oopt 45° 90° 90° 90° 90° 45° 90° 90° 68.1° 68.8°
Fopt 0.5 0.03 0.04 0.05 0.04 0.5 0.5 0.5 0.5 0.5
CFSS Oopt 45.8° 90° 90° 90° 90° 46.1° 90° 90° 90° 90°
Fopt 0.5 0.34 0.34 0.28 0.12 0.5 0.5 0.5 0.5 0.5
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Fig. 1. Curves of J and ¢ plotted against R for (6,0, 0) CSSS spherical shell, a/b =1, a/h = 10, E,/E; = 25.
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Figs. 1 and 2 display J- and g-curves against the radius R for (6, 0, 0) symmetric spherical and cylindrical shells with
three different optimal designs, which are partially optimal design over the thickness ratio r, partially optimal design
over the fiber orientation angle 0 and optimal design over both 0 and r. All the previous optimal designs considerably
reduce the dynamic response of the shell as well as the maximum control force (or control energy). But, the optimal
design over both 6 and r is the most efficient. The effect of side-to-thickness ratio on the energy J and the control force
q is presented in Fig. 3. The figure confirms the efficiency of the present optimal design over 6 and r for all side-to-
thickness ratios, particularly, for thinner shells (¢//# > 10) which need more expenditure of energy to control its dy-
namic response. The dependence of J and ¢ on the orthotropy ratio E;/E, and aspect ratio a/b is presented in Figs. 4
and 5. These figures reveal that the shells may be tailored using E/E, and a/b to improve its performance, where J and
g are rapidly decreasing with increasing the ratios E;/E, and a/b. Thus the present optimization control may be ex-
tended to include four or five design variables.

J CSSS 1
11

CSSS

0=75 r=ry, 350 -
0="75 r=ryy,

10 -
g -
0=0,,, r=0
5 0=0,,, r=0. — *
«— d 300 4

7 1 = -
0= eupt} r= rvpt
9 = eapt’ r=r opt

5 : : : R 250 : . . R
0 100 200 300 w 0 100 200 300 %

Fig. 2. Curves of J and ¢ plotted against R for (6,0, 60) CCSS cylindrical shell, a/b =1, a/h = 10, E, /E, = 25.
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Fig. 3. Curves of J and ¢ plotted against a/h for (6,0, 6) CSSS spherical shell, a/b =1, E|/E, =25, R/h = 50.
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Fig. 4. Curves of J and ¢ plotted against £, /E, for (0,0, 0) CSSS spherical shell, a/b =1, a/h =10, R/h = 50.
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Fig. 5. Curves of J and ¢ plotted against a/b for (0,0, 0) CCSS spherical shell, E;/E; = 25, a/h = 10, R/h = 50.

6. Conclusion

A structural and control optimization technique for minimizing the dynamic response of composite laminated
doubly curved shells is presented. A higher-order shell theory is used to formulate the control objective for various
cases of boundary conditions. Optimal levels of ply thickness, fiber orientation angle and closed-loop control force
are determine for angle-ply orthotropic laminated spherical and cylindrical shells in various cases of boundary
conditions. The discrepancy between the CST, FST and HST results is investigated by numerical examples. The effect
of the transverse shear deformation on the control optimization process is studied for symmetric and antisymmet-
ric shells. It is found that the optimization variables of the angle-ply symmetric laminated shells are more sensitive
to the transverse shear effect than those of the antisymmetric ones. While, the number of layers has more effect on
the antisymmetric shells than the symmetric ones. For each case of boundary conditions, there is a suitable opti-
mal design for the shell to improve its performance. The present optimal control approach is believed to be more
efficient.
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Appendix A

SS: X (&) =sinu, &, p,=mn/a.

CC: X(&)) =sin 0 &) — sinh p, 00 &, — 1,,(cos w00 &, — cosh w0 &)),
1, = (sin w,,a — sinh w,,a)/(cos w,a — cosh p,a), w, = (m+0.5)x%/a.

CS: X (&) = sin p, 00 &, — sinh 00 &; — n,,(cos w01 ¢y — cosh p, 01 &, ),
N, = (sin p,a + sinh p,a)/(cos p,,a + cosh u,a), w, = (m+0.25)n/a.

CF : X(¢&)) = sin w1 & — sinh p,,00 &, — n,,(cos w00 & — cosh w00 &),
1, = (sin w,,a + sinh w,,a)/(cos w,a + cosh u,a), w, =1.875/a, p, =4.694/a,
u; =7.855/a, w,=10996/a and pu, = (m—0.25)n/a, form=S5.

Along &,-axis these functions say Y (&,) are similar to X(¢,) but &,, a, m, u,, and n,, can be replaced by &,, b, n, i, and 7,
respectively.

U, = Aj1e9 + 2416e10 + Aoses, V1 =Sese10 + 2516€0 +511€11, Vi = Azsero + (Aes + A12)eo + A1sern,
Wi = sa6es + (s12 4 2566)€10 + 3s16€0 + s11€11 + Rzern + Ries, @y =Saxes + (512 + So6)e10 + S16€9,
Uy = (A12 +Aes)er + Axser + Aies, Vo= Amer + Agses + 242e3, Do =35ne; +Seses + 25266,
Ws = syer + 3sa6es + (s12 + 2566)€3 + S16€4 + Roes + Ryeg,  Wa = (512 + Se6)e3 + 526€2 + Si664,
Us = —syee17 — Rzei — 3s16€14 — Ries — (s12+ 2s66)e1 — s11€1,
V3= —3sye14 — Rze13 — s16€15 — (Slz + 2366)811 — Ryes — syey,
Wy = —4iyeer +2({us — 2Rs)es — Ryeq — dipgen + (Lss — 2Ra)ers — 21115 + 2g6)ers — nypers + (Cas — 2Rs)ers — npenr,
V3 = —Tieer + (Las — Ro)es — 3Mgen + (Css — Ra)ers — (Tp + Mg )era — Tyyens,
@3 = —37ye1 + (Las — Ro)es —Tigen + (Las — Rs)ers — (12 + 2flge)ers — ey,
Uy = Sgee1 + 2516e2 +511€3, Vi =52es + (S12 + 566 )e3 + S16€4,
Wi =Tiser + (Ta + 2Mgs) ez + 37i6es +Tirea + (Rs — as)es + (Ra — {ss)es,
¥y = ngeer + 21 1g€3 +nj1€s — (ss€6, Vs =Sneio + Seserr + 259,
Dy = n5ge1 + (), +1gg)ex +Mjges — Lases,  Us = (512 + Se6) €0 + Saces + Si66o,
Ws = 37x6e10 + (T2 + 2Mg6) €9 +Tige11 + e + (Rs — Lus)es + (Rs — Las)enn,
Vs = €10 + (N7, + Mes)eo +Migent — Lases,  Ps = iggeo + 2n55e10 + Myyes — Laser,
Wy =vyles, W,= nges, Wy =ymyL;(es +eig) — Lies, Wa=rlses, Ws= V7;€12,
sy = —myEy, 5;=sy+By, Ny =ny’Hy, Ty =n;—myFy,
77;,- =My — 2nyyFy; + Dy (i,j=1,2,6),
y=myF; —2nyDy+ A4, (i,j =4,5),
Ry =A11/Ri +A1n/Ry, Ry =An/Ri+An/Ry, Ry = Ais/Ri + Ax/Rs, Ry =s11/Ri + s12/Ra,
Rs = s12/Ri +s22/Ry, Rg =s16/Ri +526/R2, Ry = A11/R} + 2412/ RiRy + An [R5,
Ry =511/Ry +512/R2, Ry =512/Ry +52/Ro,  Rig =516/Ry +526/Ro.

If x = o1&, and y = o,¢,, we have:
a b
(31;62763764765766) :/0 /0 (XY,yyyyXxY,}y;X:avY,vaxxxyyXY,yaXxY)Xdexdya
a b
(es, e9,e10,€11,€12) = /0 /0 (XY, Xoa Yy, X0 Yy, X Y, XY, ) XY, dx dy,
a b
(6756135614361536167617) == A \/() (XY;X)QCYaXxxY,yya)(,xxxxY;XxwaXKmy)XYdXdya

a b
(e15, €19, €20) = / / (XﬁY;XszwX’zch2> dxdy.
0o Jo ’ ’ .
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Appendix B

A = AMiUs + Aot Vs + Ay W3 + Asi @3 — Ao,
Aty = BoW3 — ApUs — A Vs — A W3 — Ay @3,

u n v ¢ m n ¥ @ wiy n ¥ &
U, n v, & w, v, & Wy 1h ¥, @
Ay = . Ap= , Ap=|_ )
U Vs Py @y Wo Vi Wy @y Wy Vi Wy @Dy
Us Vs Vs &s Ws Vs ¥s @s Ws Vs ¥s s
Ul VV] qjl djl U1 W] 'P] 4)1 U] V1 VV] ¢1
U2 VV2 lPZ (152 U2 Wz 'Pz 452 U2 Vé VVZ @2
Ay = , Ap = _ y Ay = )
Us Wy Vs Py U Wy Vs @4 U Ve W, @y
US VVS YJS djs U5 W3 lps Cb5 U5 V5 VVS ¢5
u o W, @ u n v m u n v w
U, Vh W, & U h ¥, W U, " ¥, W,
Ap = _ , Asp = , Asy = _ |
U TV, Wy &4 Ug Vy Wy W U Vs Wy Wy
Us Vs Ws ®s Us Vs ¥Ps Ws Us Vs Ps Ws

Appendix C

ki = (kaaLs + kaaLs + kasLy + koL + ko3)Ls + (kaaLs + kiaLy + ksa + kasLy)Ls + (ki Ly + kisLy + ki3) Ly + ks
+ (kssL7 + kss)L7,

ky = (kaaLg + kiaLy + kasLg + 2kyoLa) Ly + (knaLs + kasLy + kisLy + ko3 )Ly + (kasLg 4 kiaLy + 2kaqLe)Ls
+ (kis + kisLy + 2knLy) Ly + (kiaLy + ksa + kasLa)Le + (2kssLy + kisLy + kss)Ls,

ks = (knoLs + koaLg + k1oL + kosLs) Ly + (ki1 Lo + kiaLe + kisLs) Lo + (kasL + kssLg)Ls + kaLg + pzer,

ks = L (Lies + Lieq) + I77*(es + en) + I3 (L3es + Lienn) + 2Lyes(LiLs + LsLy) + 2915 (Lses + Laens)
+2Iy(Ls + Ly), I, =1L+,

ks = 21, (LiLyers + L3Laes) + 215 (LsLges + LiLgers) + 2ylses(Ly + LiLg + Ly) + 2915 (Lsern + Lees) + 215 es(LoLs
+ Lily + LiLg), I} = Iy* + 2Isy + I,

ke = Ii(Lyes + Lienn) + I5 (Liens + Lges) + 205 es(Lals + LoLg), I = I;)* + Iy,

kiy = 3(Aneis + 24i6e10 + Agsers),  kip = Aiges + Agsers + Azers + Axseno,

ki3 = e3s11 + (s12 + 2s66)e10 + (€14 + 2e13)s16 + €19526 + Ries + Rzeys,

kis = esS11 + (ews + €18)S16 + €10566, k15 = €10(S12 + Se6) + €13516 + €19526,

kyy = Asees + H(Aners + Aesern),  kas = eianl}, + e3iig + €iofng + €1steg + eslas,

kay = €102 + e3(s12 + 2566) + (€14 + 2e15)526 + €x0816 + Roes + Rens,

ks = e3(512 + Se6) + €x0516 + €135,  kos = €105 + (€14 + e15)526 + €356,

k3 = 2(esng + erotfag + €1stes)
+ 3(ea0m1y + 2e1am1y + €19y + e12las + 2e5(us + e6ss) + Raers + Rseis + 5R7e7 + 2Rges,

ksq = exTjyy + ety + 3esTfig + eioflng + 2e1sigs + es(las + Rio) + e6(ss + ersRs,

kss = €197y, + ewllys + 3Ty + 3erollag + 2e1sTgs + e12las + es(Cas + Rio) + Roers,

kas = Hexny; + 2esnjg + eshg + e6Css),  kss = S(ewny, + 2e10nsg + eishgg + e1nlas),

Li=—-0’An, Ly=I1A1+Ap, Ly=—-w’Ay, Ly= 1Ay + Ay,
Ls = —w*Ay, Le=1An+Apn, Ly =—-w’Asi, Lg=IAsi + As,
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ay = —4kelS, ay = dkel* (1 + 2607%), a3 = koksl2 (k1> + 4k3e* 1 + 4200*),
ay = —4 2k 0* + kol),  ag = —2ki, as = k3 (dksky — k2), ay = —dkskel”,
ag = 21 (ks — koksks® — I317), a9 = 203kel?,  ay = 2k3(2k3 — ksl + kel),
an = Y (4kiks + koks — 2kakiks),  ann = 4k5,  any = 2kel’ (ko + 2kslar?),

ay = —a1, a5 =kay, ag =231 ksl — 2kykel — 2ksr® — 2ks3),

a7 = exk2ksl? + 2k3kslo? — I3ksksl® — a3 1o’ ks — dkie® — 2kyk3 1.
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